RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 202, Number 3, Pages 474–491 (Mi tmf9785)

Hamiltonian description of vortex systems

L. I. Piterbarg

Department of Mathematics, University of Southern California, Los Angeles, California, USA

Abstract: In the framework of two-dimensional ideal hydrodynamics, we define a vortex system as a smooth vorticity function with a few local positive maximums and negative minimums separated by curves of zero vorticity. We discuss the invariants of such structures that follow from the vorticity conservation law and the invertibility of Lagrangian motion. Introducing new functional variables diagonalizing the original noncanonical Poisson bracket, we develop a Hamiltonian formalism for vortex systems.

Keywords: vortex, continuum Hamiltonian system, Poisson bracket, vorticity, two-dimensional hydrodynamics.

Received: 27.07.2019
Revised: 18.09.2019

DOI: 10.4213/tmf9785


 English version:
Theoretical and Mathematical Physics, 2020, 202:3, 412–427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026