RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 201, Number 1, Pages 126–136 (Mi tmf9711)

This article is cited in 13 papers

$p$-adic generalized Gibbs measure for the Ising model on a Cayley tree

M. M. Rahmatullaevab, O. N. Khakimovb, A. M. Tukhtaboevc

a Namangam State University, Namangan, Uzbekistan
b Institute of Mathematics, National University of Uzbekistan named by after Mirzo Ulugbek, Tashkent, Uzbekistan
c Namangan Construction Institute, Namangan, Uzbekistan

Abstract: We consider a $p$-adic Ising model on the Cayley tree of order $k\ge2$. We completely describe all $p$-adic translation-invariant generalized Gibbs measures for $k=3$. Moreover, we show the existence of a phase transition for the $p$-adic Ising model for any $k\ge3$ if $p\equiv1\!\pmod4$.

Keywords: $p$-adic number, Ising model, Gibbs measure, phase transition.

Received: 25.02.2019
Revised: 01.04.2019

DOI: 10.4213/tmf9711


 English version:
Theoretical and Mathematical Physics, 2019, 201:1, 1521–1530

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026