RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 201, Number 2, Pages 232–265 (Mi tmf9708)

This article is cited in 4 papers

Group analysis of the one-dimensional Boltzmann equation: IV. Complete group classification in the general case

A. V. Borovskikh, K. S. Platonova

Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider the one-dimensional Boltzmann equation $f_t+cf_x+(\mathcal{F} f)_c=0$ with a function $\mathcal{F}$ depending on $(t,x,c,f)$ and obtain the complete group classification of such equations in the class of point changes of whole set of variables $(t,x,c,f)$. For this, we impose additional conditions on the transformations for the invariance of (a) the relations $dx=c\,dt$ and $dc=\mathcal{F}\,dt$, (b) the lines $dt=dx=0$, and (c) the form $f\,dx\,dc$, which fix the physical meaning of the used variables and the relations between them.

Keywords: Boltzmann equation, symmetry group, equivalence group, gas dynamics equation.

MSC: 35Q20

Received: 25.02.2019
Revised: 24.05.2019

DOI: 10.4213/tmf9708


 English version:
Theoretical and Mathematical Physics, 2019, 201:2, 1614–1643

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026