RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 200, Number 2, Pages 259–268 (Mi tmf9666)

This article is cited in 1 paper

Chebyshev polynomials and the proper decomposition of functions

V. D. Lyakhovsky

Saint Petersburg State University, St. Petersburg, Russia

Abstract: We study the equivalence property of scalar products, based on which we can find the rows of the Chebyshev polynomial sets. For each function in the space $\mathcal L^2_{\mathfrak g}$, the approximation by a row of Chebyshev polynomials is characterized by the standard deviation. In the case of simple algebras, the sets of standard Chebyshev polynomials ensure rapid convergence of the rows. The presented calculation algorithm produces correct results for the algebras $B_3$, $C_3$, and $D_3$.

Keywords: root system, Chebyshev multivariate polynomial, orthogonal polynomial, discrete Fourier series, function decomposition.

Received: 29.11.2018
Revised: 29.11.2018

DOI: 10.4213/tmf9666


 English version:
Theoretical and Mathematical Physics, 2019, 200:2, 1147–1157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026