RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 201, Number 1, Pages 54–64 (Mi tmf9643)

This article is cited in 3 papers

Blowup solutions of the nonlinear Thomas equation

M. O. Korpusov

Lomonosov Moscow State University, Moscow, Russia

Abstract: We study boundary value problems on an interval and on the half-line for the well-known Thomas equation $u_{xt}+\alpha u_x+\beta u_t+u_xu_t=0$, which is a model equation describing processes in chemical kinetics with ion exchange during sorption in a reagent stream. For this equation, we obtain sufficient conditions for its solution blowup in a finite time.

Keywords: Sobolev-type nonlinear equation, blowup, local solvability, nonlinear capacity, blowup time estimate.

Received: 09.10.2018
Revised: 04.03.2019

DOI: 10.4213/tmf9643


 English version:
Theoretical and Mathematical Physics, 2019, 201:1, 1457–1467

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026