RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 199, Number 2, Pages 210–217 (Mi tmf9619)

This article is cited in 1 paper

Quasi-Stäckel Hamiltonians and electron dynamics in an external field in the two-dimensional case

V. G. Marikhinab

a Landau Institute for Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia
b Institute of Numerical Mathematics, RAS, Moscow, Russia

Abstract: In the two-dimensional case, we construct nondegenerate Hamiltonians that describe electron motion in an electromagnetic field and have additional integrals of motion quadratic in momentum. We completely classify the quasi-Stäckel Hamiltonians related to these systems in the cases where the leading approximation in momenta of the additional integral depends quadratically on the coordinates. We consider reductions of such systems that are symmetric under rotation about the $z$ axis.

Keywords: classical electrodynamics, separation of variables, algebraic curve.

Received: 14.08.2018
Revised: 28.08.2018

DOI: 10.4213/tmf9619


 English version:
Theoretical and Mathematical Physics, 2019, 199:2, 652–658

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026