RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 199, Number 3, Pages 372–398 (Mi tmf9604)

This article is cited in 3 papers

Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy

Jinbing Chen

School of Mathematics, Southeast University, Nanjing, China

Abstract: We develop a complete algorithm for deriving quasiperiodic solutions of the negative-order KdV (nKdV) hierarchy using the backward Neumann systems. Starting with the nonlinearization of a Lax pair, the nKdV hierarchy reduces to a family of backward Neumann systems via separating temporal and spatial variables. We show that the backward Neumann systems are integrable in the Liouville sense and their involutive solutions yield finite-parameter solutions of the nKdV hierarchy. We present the negative-order Novikov equation, which specifies a finite-dimensional invariant subspace of nKdV flows. Using the Abel–Jacobi variable, we integrate the nKdV flows with Abel–Jacobi solutions on the Jacobian variety of a Riemann surface. Finally, we study the Riemann–Jacobi inversion of the Abel–Jacobi solutions, whence we obtain some quasiperiodic solutions of the nKdV hierarchy.

Keywords: nKdV hierarchy, backward Neumann system, quasiperiodic solution.

MSC: 35Q51, 37K10, 37K20

Received: 03.07.2018
Revised: 16.10.2018

DOI: 10.4213/tmf9604


 English version:
Theoretical and Mathematical Physics, 2019, 199:3, 798–822

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026