RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 199, Number 2, Pages 235–256 (Mi tmf9592)

This article is cited in 7 papers

Algebro-geometric integration of the modified Belov–Chaltikian lattice hierarchy

X. Geng, J. Wei, X. Zeng

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, People's Republic of China

Abstract: Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov–Chaltikian lattice hierarchy associated with a discrete $3\times3$ matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve $\mathcal{K}_{m-2}$ of arithmetic genus $m-2$. We study the asymptotic properties of the Baker–Akhiezer function and the algebraic function carrying the data of the divisor near $P_{\infty_1}$, $P_{\infty_2}$, $P_{\infty_3}$, and $P_0$ on $\mathcal{K}_{m-2}$. Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the Baker–Akhiezer function, and, in particular, solutions of the entire modified Belov–Chaltikian lattice hierarchy.

Keywords: modified Belov–Chaltikian lattice hierarchy, trigonal curve, quasiperiodic solution.

Received: 06.06.2018
Revised: 06.06.2018

DOI: 10.4213/tmf9592


 English version:
Theoretical and Mathematical Physics, 2019, 199:2, 675–694

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026