RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 196, Number 3, Pages 419–433 (Mi tmf9523)

This article is cited in 3 papers

Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization

D. Leviab, L. Martinacd, P. Winternitzef

a Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma, Italy
b Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy
c Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
d Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
e Département de Mathématiques et de Statistique, Université de Montréal, Montréal (QC), Canada
f Centre de Recherches Mathématiques, Université de Montréal, Montréal (QC), Canada

Abstract: The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra $o(3,1)$ as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane $E_2$. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group $O(3,1)$ and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under $O(3,1)$ and is itself invariant under a subgroup of $O(3,1)$, namely, the $O(2)$ rotations of the Euclidean plane.

Keywords: Lie group, partial differential equation, discretization procedure.

MSC: 22E60, 35J15, 39A20

Received: 20.12.2017

DOI: 10.4213/tmf9523


 English version:
Theoretical and Mathematical Physics, 2018, 196:3, 1307–1319

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026