RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 195, Number 3, Pages 491–506 (Mi tmf9480)

This article is cited in 43 papers

Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability

D. K. Durdiev, A. A. Rakhmonov

Bukhara State University, Bukhara, Uzbekistan

Abstract: We consider a system of hyperbolic integro-differential equations for SH waves in a visco-elastic porous medium. The inverse problem is to recover a kernel (memory) in the integral term of this system. We reduce this problem to solving a system of integral equations for the unknown functions. We apply the principle of contraction mappings to this system in the space of continuous functions with a weight norm. We prove the global unique solvability of the inverse problem and obtain a stability estimate of a solution of the inverse problem.

Keywords: integro-differential equation, inverse problem, Dirac delta function, kernel, hyperbolic equation, Lame coefficient, global solvability, weight function.

Received: 06.10.2017

DOI: 10.4213/tmf9480


 English version:
Theoretical and Mathematical Physics, 2018, 195:3, 923–937

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026