RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 197, Number 1, Pages 153–160 (Mi tmf9474)

This article is cited in 10 papers

Reflection and refraction of solitons by the $\text{KdV}$–Burgers equation in nonhomogeneous dissipative media

A. V. Samokhinab

a Trapeznikov Institute of Control Sciences, RAS, Moscow, Russia
b Moscow State Technical University of Civil Aviation, Moscow, Russia

Abstract: We study the behavior of the soliton that encounters a barrier with dissipation while moving in a nondissipative medium. We use the Korteweg–de Vries–Burgers equation to model this situation. The modeling includes the case of a finite dissipative layer similar to a wave passing through air–glass–air and also a wave passing from a nondissipative layer into a dissipative layer (similar to light passing from air to water). The dissipation predictably reduces the soliton amplitude/velocity. Other effects also occur in the case of a finite barrier in the soliton path: after the wave leaves the dissipative barrier, it retains the soliton form, but a reflection wave arises as small and quasiharmonic oscillations (a breather). The breather propagates faster than the soliton passing through the barrier.

Keywords: KdV–Burgers equation, nonhomogeneous layered media, soliton, reflection, refraction.

PACS: 03.65.Ge (PACS2010)

MSC: 35Q51 (MSC2010)

Received: 30.09.2017

DOI: 10.4213/tmf9474


 English version:
Theoretical and Mathematical Physics, 2018, 197:1, 1527–1533

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026