RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 195, Number 2, Pages 197–208 (Mi tmf9437)

This article is cited in 5 papers

Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions

H. Wajahat A. Riaz, M. Hassan

Department of Physics, University of Punjab, Lahore, Pakistan

Abstract: We consider a Darboux transformation of a generalized lattice (or semidiscrete) Heisenberg magnet (GLHM) model. We define a Darboux transformation on solutions of the Lax pair and on solutions of the spin evolution equation of the GLHM model. The solutions are expressed in terms of quasideterminants. We give a general expression for $K$-soliton solutions in terms of quasideterminants. Finally, we obtain one- and two-soliton solutions of the GLHM model using quasideterminant properties.

Keywords: discrete integrable system, soliton, Darboux transformation.

Received: 31.07.2017
Revised: 11.09.2017

DOI: 10.4213/tmf9437


 English version:
Theoretical and Mathematical Physics, 2018, 195:2, 665–675

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026