RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 195, Number 2, Pages 209–224 (Mi tmf9428)

This article is cited in 23 papers

Asymptotic analysis of multilump solutions of the Kadomtsev–Petviashvili-I equation

Jen-Hsu Chang

Department of Computer Science and Information Engineering, National Defense University, Tau-Yuan, Taiwan

Abstract: We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to $-\infty$, then all the peak locations are on a vertical line, while if the time goes to $\infty$, then they are all on a horizontal line, i.e., a $\pi/2$ rotation is observed after interaction.

Keywords: Grammian determinant, lumps solutions, orthogonal polynomials, Wronskian.

MSC: 37K40

Received: 04.07.2017
Revised: 05.09.2017

DOI: 10.4213/tmf9428


 English version:
Theoretical and Mathematical Physics, 2018, 195:2, 676–689

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026