RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1998 Volume 117, Number 3, Pages 370–384 (Mi tmf939)

This article is cited in 61 papers

Functional tetrahedron equation

R. M. Kashaeva, I. G. Korepanovb, S. M. Sergeevc

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b South Ural State University
c Branch of the Institute of Nuclear Physics

Abstract: We describe a method for constructing classical integrable models in a $(2+1)$-dimensional discrete space–time based on the functional tetrahedron equation, an equation that makes the symmetries of a model obvious in a local form. We construct a very general “block-matrix model”, find its algebraic-geometric solutions, and study its various particular cases. We also present a remarkably simple quantization scheme for one of those cases.

Received: 28.02.1998

DOI: 10.4213/tmf939


 English version:
Theoretical and Mathematical Physics, 1998, 117:3, 1402–1413

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026