RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 194, Number 3, Pages 418–435 (Mi tmf9352)

This article is cited in 9 papers

Darboux transformation for a semidiscrete short-pulse equation

H. Wajahat A. Riaz, M. Hassan

Department of Physics, University of the Punjab, Lahore, Pakistan

Abstract: We define a Darboux transformation in terms of a quasideterminant Darboux matrix on the solutions of a semidiscrete short-pulse equation. We also give a quasideterminant formula for $N$-loop soliton solutions and obtain a general expression for the multiloop solution expressed in terms of quasideterminants. Using quasideterminants properties, we find explicit solutions and as an example compute one- and two-loop soliton solutions in explicit form.

Keywords: discrete integrable system, soliton, Darboux transformation, quasideterminant.

Received: 16.02.2017
Revised: 28.03.2017

DOI: 10.4213/tmf9352


 English version:
Theoretical and Mathematical Physics, 2018, 194:3, 360–376

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026