RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 192, Number 3, Pages 369–394 (Mi tmf9304)

This article is cited in 6 papers

Eigenvalues of Bethe vectors in the Gaudin model

A. I. Moleva, E. E. Mukhinb

a School of Mathematics and Statistics, University of Sydney, Australia
b Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, USA

Abstract: According to the Feigin–Frenkel–Reshetikhin theorem, the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors can be found using the center of an affine vertex algebra at the critical level. We recently calculated explicit Harish-Chandra images of the generators of the center in all classical types. Combining these results leads to explicit formulas for the eigenvalues of higher Gaudin Hamiltonians on Bethe vectors. The Harish-Chandra images can be interpreted as elements of classical $\mathcal{W}$-algebras. By calculating classical limits of the corresponding screening operators, we elucidate a direct connection between the rings of $q$-characters and classical $\mathcal W$-algebras.

Keywords: Gaudin Hamiltonian, Bethe vector, $q$-character, classical $\mathcal{W}$-algebra.

Received: 24.11.2016

DOI: 10.4213/tmf9304


 English version:
Theoretical and Mathematical Physics, 2017, 192:3, 1258–1281

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026