RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 193, Number 3, Pages 563–574 (Mi tmf9273)

This article is cited in 2 papers

Algebraic-geometric solutions of the Dirac hierarchy

Xiao Yang, Jiayan Han

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China

Abstract: A Lenard equation is introduced, its two special solutions are given. One is used to derive an exceptional Dirac hierarchy, the other is applied to construct the generation function. The generation function yields conserved integrals of the Dirac Hamiltonian system, and defines an algebraic curve. Based on the theory of algebraic curve, the Dirac Hamiltonian system is proved to be integrable, the algebraic-geometric solutions of the Dirac hierarchy are obtained.

Keywords: Lenard equation; Dirac hierarchy; algebraic-geometric solution.

PACS: 02.30.Jr; 02.30.Ik; 04.20.Jb.

Received: 13.09.2016
Revised: 10.10.2016

DOI: 10.4213/tmf9273


 English version:
Theoretical and Mathematical Physics, 2017, 193:3, 1894–1904

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026