RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 190, Number 1, Pages 48–57 (Mi tmf9205)

Multidimensional linearizable system of $n$-wave-type equations

A. I. Zenchuk

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region

Abstract: We propose a linearizable version of a multidimensional system of $n$-wave-type nonlinear partial differential equations (PDEs). We derive this system using the spectral representation of its solution via a procedure similar to the dressing method for nonlinear PDEs integrable by the inverse scattering transform method. We show that the proposed system is completely integrable and construct a particular solution.

Keywords: $n$-wave equation, linearizable equation, dressing method, periodic solution.

PACS: 02.30.Ik,02.30.Jr

MSC: 37K10 , 37K15

Received: 01.04.2016
Revised: 15.04.2016

DOI: 10.4213/tmf9205


 English version:
Theoretical and Mathematical Physics, 2017, 190:1, 43–51

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026