RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 189, Number 2, Pages 198–218 (Mi tmf9137)

This article is cited in 6 papers

Fusion transformations in Liouville theory

N. A. Nemkovab

a State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, Russia

Abstract: We study the fusion kernel for nondegenerate conformal blocks in the Liouville theory as a solution of difference equations originating from the pentagon identity. We propose an approach for solving these equations based on a "nonperturbative" series expansion that allows calculating the fusion kernel iteratively. We also find exact solutions for the special central charge values $c=1+6(b-b^{-1})^2$, $b\in\mathbb N$. For $c=1$, the obtained result reproduces the formula previously obtained from analytic properties of a solution of a Painlevé equation, but our solution has a significantly simplified form.

Keywords: conformal field theory, Liouville theory, Virasoro algebra.

PACS: 11.25.Hf

MSC: 17B68, 81R10

Received: 09.11.2015

DOI: 10.4213/tmf9137


 English version:
Theoretical and Mathematical Physics, 2016, 189:2, 1574–1591

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026