RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 190, Number 3, Pages 502–510 (Mi tmf9117)

Renormalized coupling constants for the three-dimensional scalar $\lambda\phi^4$ field theory and pseudo-$\epsilon$-expansion

M. A. Nikitinaa, A. I. Sokolovab

a St. Petersburg State University, St. Petersburg, Russia
b National Research University ITMO, St. Petersburg, Russia

Abstract: The renormalized coupling constants $g_{2k}$ that enter the equation of state and determine nonlinear susceptibilities of the system have universal values $g_{2k}^*$ at the Curie point. We use the pseudo-$\epsilon$-expansion approach to calculate them together with the ratios $R_{2k}^{}=g_{2k}^{}/ g_4^{k-1}$ for the three-dimensional scalar $\lambda\phi^4$ field theory. We derive pseudo-$\epsilon$-expansions for $g_6^*$, $g_8^*$, $R_6^*$, and $R_8^*$ in the five-loop approximation and present numerical estimates for $R_6^*$ and $R_8^*$. The higher-order coefficients of the pseudo-$\epsilon$-expansions for $g_6^*$ and $R_6^*$ are so small that simple Padé approximants turn out to suffice for very good numerical results. Using them gives $R_6^*= 1.650$, while the recent lattice calculation gave $R_6^*=1.649(2)$. The pseudo-$\epsilon$-expansions of $g_8^*$ and $R_8^*$ are less favorable from the numerical standpoint. Nevertheless, Padé–Borel summation of the series for $R_8^*$ gives the estimate $R_8^*=0.890$, differing only slightly from the values $R_8^*=0.871$ and $R_8^*=0.857$ extracted from the results of lattice and field theory calculations.

Keywords: nonlinear susceptibility, effective coupling constant, Ising model, renormalization group, pseudo-$\epsilon$-expansion.

Received: 09.12.2015

DOI: 10.4213/tmf9117


 English version:
Theoretical and Mathematical Physics, 2017, 190:3, 431–438

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026