RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 188, Number 3, Pages 459–469 (Mi tmf9082)

This article is cited in 6 papers

Ubiquitous symmetries

M. C. Nucci

Dipartimento di Matematica e Informatica, Università di Perugia and INFN, Sezione Perugia, Perugia, Italy

Abstract: We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as $\lambda$-symmetries) of the Riccati chain.

Keywords: Lie symmetry, Noether symmetry, classical quantization, superintegrability, nonlocal symmetry.

PACS: 02.20.Sv; 45.20.Jj;03.65.Fd

DOI: 10.4213/tmf9082


 English version:
Theoretical and Mathematical Physics, 2016, 188:3, 1361–1370

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026