RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 188, Number 2, Pages 185–222 (Mi tmf9005)

Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations

A. M. Levinab, M. A. Olshanetskyc, A. V. Zotovade

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Department of Mathematics, National Research University "Higher School of Economics", Moscow, Russia
c Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
d Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
e Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical $r$-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.

Keywords: elliptic integrable system, finite-order Lie algebra automorphism, Higgs bundle, Knizhnik–Zamolodchikov–Bernard equation.

Received: 14.07.2015

DOI: 10.4213/tmf9005


 English version:
Theoretical and Mathematical Physics, 2016, 188:2, 1121–1154

Bibliographic databases:
ArXiv: 1507.04265


© Steklov Math. Inst. of RAS, 2026