RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 185, Number 1, Pages 139–150 (Mi tmf8932)

Generalized Pascal's triangles and singular elements of modules of Lie algebras

V. D. Lyakhovsky, O. V. Postnova

St. Petersburg State University, St. Petersburg, Russia

Abstract: We consider the problem of determining the multiplicity function $m_{\xi}^{\otimes^p\omega}$ in the tensor power decomposition of a module of a semisimple algebra $\mathfrak{g}$ into irreducible submodules. For this, we propose to pass to the corresponding decomposition of a singular element $\Psi((L_g^\omega)^{\otimes^p})$ of the module tensor power into singular elements of irreducible submodules and formulate the problem of determining the function $M_{\xi}^{\\otimes^p\omega}$. This function satisfies a system of recurrence relations that corresponds to the procedure for multiplying modules. To solve this problem, we introduce a special combinatorial object, a generalized $(g,\omega)$ pyramid, i.e., a set of numbers $(p,\{m_i\})_{g,\omega}$ satisfying the same system of recurrence relations. We prove that $M_{\xi}^{\otimes^p\omega}$ can be represented as a linear combination of the corresponding $(p,\{m_i\})_{g,\omega}$. We illustrate the obtained solution with several examples of modules of the algebras $sl(3)$ and $so(5)$.

Keywords: theory of Lie algebra representation, tensor product of modules, Weyl formula.

DOI: 10.4213/tmf8932


 English version:
Theoretical and Mathematical Physics, 2015, 185:1, 1481–1491

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026