RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 186, Number 3, Pages 371–385 (Mi tmf8889)

This article is cited in 8 papers

Multidimensional quasilinear first-order equations and multivalued solutions of the elliptic and hyperbolic equations

V. M. Zhuravlev

Technological Research Institute of Ulyanovsk State University, Ulyanovsk, Russia

Abstract: We discuss an extension of the theory of multidimensional second-order equations of the elliptic and hyperbolic types related to multidimensional quasilinear autonomous first-order partial differential equations. Calculating the general integrals of these equations allows constructing exact solutions in the form of implicit functions. We establish a connection with hydrodynamic equations. We calculate the number of free functional parameters of the constructed solutions. We especially construct and analyze implicit solutions of the Laplace and d'Alembert equations in a coordinate space of arbitrary finite dimension. In particular, we construct generalized Penrose–Rindler solutions of the d'Alembert equation in $3{+}1$ dimensions.

Keywords: exact solution of multidimensional nonlinear hyperbolic equations, exact solution of multidimensional nonlinear elliptic equations, multivalued solution, system of nonlinear equations of hydrodynamic type, electromagnetic wave equation, Laplace equation, d'Alembert equation.

PACS: 03.65.Ge, 41.20.Jb, 02.30.Jr

MSC: 35F50,35J62, 35L72, 76L05, 78A40

Received: 06.03.2015
Revised: 09.06.2015

DOI: 10.4213/tmf8889


 English version:
Theoretical and Mathematical Physics, 2016, 186:3, 320–332

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026