RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 184, Number 1, Pages 41–56 (Mi tmf8877)

This article is cited in 22 papers

Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI

A. M. Levinab, M. A. Olshanetskyca, A. V. Zotovd

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Department of Mathematics, National Research University Higher School of Economics, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
d Steklov Mathematical Institute of RAS, Moscow, Russia

Abstract: Quantum elliptic $R$-matrices satisfy the associative Yang–Baxter equation in $\mathrm{Mat}(N)^{\otimes 2}$, which can be regarded as a noncommutative analogue of the Fay identity for the scalar Kronecker function. We present a broader list of $R$-matrix-valued identities for elliptic functions. In particular, we propose an analogue of the Fay identities in $\mathrm{Mat}(N)^{\otimes 2}$. As an application, we use the $\mathbb{Z}_N\times\mathbb{Z}_N$ elliptic $R$-matrix to construct $R$-matrix-valued $2N^2\times 2N^2$ Lax pairs for the Painlevé VI equation {(}in the elliptic form{\rm)} with four free constants. More precisely, the case with four free constants corresponds to odd $N$, and even $N$ corresponds to the case with a single constant in the equation.

Keywords: quantum $R$-matrix, multidimensional Lax pair, Painlevé equation.

Received: 26.02.2015

DOI: 10.4213/tmf8877


 English version:
Theoretical and Mathematical Physics, 2015, 184:1, 924–939

Bibliographic databases:
ArXiv: 1501.07351


© Steklov Math. Inst. of RAS, 2026