RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 183, Number 1, Pages 36–50 (Mi tmf8781)

This article is cited in 4 papers

Superposition principle and exact solutions of a nonlinear diffusion equation

V. M. Zhuravlev

Research Technological Institute, Ulyanovsk State University, Ulyanovsk, Russia

Abstract: We present a method for constructing exact solutions of nonlinear diffusion equations in a one-dimensional coordinate space using a special superposition principle. As equations of nonlinear diffusion, we take equations of the form $n_t-(\ln n)_{xx}+\mu n+\gamma n^2-g=0$, which play an important role in the problem of the emergence of regular structures in nonlinear media under the action of external radiation sources. The method is based on using differential properties of polynomials in functional parameters. We present concrete solutions and analyze some of their common properties.

Keywords: nonlinear diffusion equation, exact solution, superposition principle, regular structure.

PACS: 02.30.Jr 05.60.Cd 05.65.+b

MSC: 35K55 80A20

Received: 19.08.2014
Revised: 08.10.2014

DOI: 10.4213/tmf8781


 English version:
Theoretical and Mathematical Physics, 2015, 183:1, 478–490

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026