RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 181, Number 2, Pages 276–295 (Mi tmf8722)

This article is cited in 10 papers

Necessary integrability conditions for evolutionary lattice equations

V. E. Adler

Landau Institute for Theoretical Physics, RAS, Chernogolovka, Russia

Abstract: We study the structure of solutions of the Lax equation $D_t(G)=[F,G]$ for formal series in powers of the shift operator. We show that if an equation with a given series $F$ of degree $m$ admits a solution $G$ of degree $k$, then it also admits a solution $H$ of degree $m$ such that $H^k=G^m$. We use this property to derive necessary integrability conditions for scalar evolutionary lattices.

Keywords: Volterra-type lattice, higher symmetry, conservation law, integrability test.

PACS: 02.30.Ik

MSC: 37K10

Received: 01.06.2014

DOI: 10.4213/tmf8722


 English version:
Theoretical and Mathematical Physics, 2014, 181:2, 1367–1382

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026