RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 180, Number 3, Pages 318–328 (Mi tmf8685)

This article is cited in 4 papers

Nonuniqueness of a Gibbs measure for the Ising ball model

N. M. Khatamov

Namangan State University, Namangan, Uzbekistan

Abstract: We study a new model, the so-called Ising ball model on a Cayley tree of order $k\ge2$. We show that there exists a critical activity $\lambda_{\rm cr}=\sqrt[4]{0.064}$ such that at least one translation-invariant Gibbs measure exists for $\lambda\ge\lambda_{\rm cr}$, at least three translation-invariant Gibbs measures exist for $0<\lambda<\lambda_{\rm cr}$, and for some $\lambda$, there are five translation-invariant Gibbs measures and a continuum of Gibbs measures that are not translation invariant. For any normal divisor $\widehat{G}$ of index $2$ of the group representation on the Cayley tree, we study $\widehat{G}$-periodic Gibbs measures. We prove that there exists an uncountable set of $\widehat{G}$-periodic (not translation invariant and “checkerboard” periodic) Gibbs measures.

Keywords: Cayley tree, configuration, Ising ball model, Gibbs measure.

Received: 29.03.2014

DOI: 10.4213/tmf8685


 English version:
Theoretical and Mathematical Physics, 2014, 180:3, 1030–1039

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026