RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 179, Number 1, Pages 3–12 (Mi tmf8609)

This article is cited in 1 paper

Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices

J. Avana, P. P. Kulishb, G. Rolleta

a Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, Cergy-Pontoise, France
b St. Petersburg Department of the Steklov Institute of Mathematics, St. Petersburg, Russia

Abstract: We classify nonoperatorial matrices $K$ solving the Skylanin quantum reflection equation for all $R$-matrices obtained from the newly defined general rank-$n$ Hadamard-type representations of the Temperley–Lieb algebra $TL_N(\sqrt{n})$. They are characterized by a universal set of algebraic equations in a specific canonical basis uniquely defined by the “master matrix” associated with the chosen realization of the Temperley–Lieb algebra.

Keywords: reflection equation, Yang–Baxter equation, Temperley–Lieb algebra.

Received: 07.11.2013

DOI: 10.4213/tmf8609


 English version:
Theoretical and Mathematical Physics, 2014, 179:1, 387–394

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026