RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 178, Number 3, Pages 307–321 (Mi tmf8595)

This article is cited in 4 papers

Integer-valued characteristics of solutions of the noncommutative sigma model

A. V. Domrina

Lomonosov Moscow State University, Moscow, Russia

Abstract: Any finite-energy solution of a noncommutative sigma model has three nonnegative integer-valued characteristics: the normalized energy $e(\Phi)$, canonical rank $r(\Phi)$, and minimum uniton number $u(\Phi)$. We prove that $r(\Phi)\ge u(\Phi)$ and $e(\Phi)\ge u(\Phi)(u(\Phi)+1)/2$. Given any numbers $e,r,u\in\mathbb N$ that satisfy the slightly stronger inequalities $r\ge u$ and $e\ge r+u(u-1)/2$, we construct a finite-energy solution $\Phi$ with $e(\Phi)=e$, $r(\Phi)=r$, and $u(\Phi)=u$.

Keywords: noncommutative sigma model, uniton factorization.

Received: 10.09.2013

DOI: 10.4213/tmf8595


 English version:
Theoretical and Mathematical Physics, 2014, 178:3, 265–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026