RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 179, Number 3, Pages 317–349 (Mi tmf8570)

This article is cited in 14 papers

Quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy

X. Zeng, X. Geng

Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China

Abstract: Using the Lax matrix and elliptic variables, we decompose the discrete Chen–Lee–Liu hierarchy into solvable ordinary differential equations. Based on the theory of the algebraic curve, we straighten the continuous and discrete flows related to the discrete Chen–Lee–Liu hierarchy in Abel–Jacobi coordinates. We introduce the meromorphic function $\phi$, Baker–Akhiezer vector $\bar\psi$, and hyperelliptic curve $\mathcal{K}_N$ according to whose asymptotic properties and the algebro-geometric characters we construct quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy.

Keywords: discrete Chen–Lee–Liu equation, quasiperiodic solution.

Received: 02.07.2013
Revised: 20.12.2013

DOI: 10.4213/tmf8570


 English version:
Theoretical and Mathematical Physics, 2014, 179:3, 649–678

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026