Abstract:
We consider the problem for eigenvalues of a perturbed two-dimensional oscillator in the case of a resonance frequency. The exciting potential is given by a Hartree-type integral operator with a smooth self-action potential. We find asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundary of spectral clusters, which form around energy levels of the nonperturbed operator. To calculate them, we use asymptotic formulas for quantum means.