RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 175, Number 2, Pages 193–205 (Mi tmf8463)

This article is cited in 8 papers

Librations and ground-state splitting in a multidimensional double-well problem

A. Yu. Anikin

Bauman Moscow State Technical University, Moscow, Russia

Abstract: We derive an asymptotic formula for the splitting of the lowest eigenvalues of the multidimensional Schrödinger operator with a symmetric double-well potential. Unlike the well-known formula of Maslov, Dobrokhotov, and Kolosoltsov, the obtained formula has the form $A(h)e^{-S/h}(1+o(1))$, where $S$ is the action on a periodic trajectory (libration) of the classical system with the inverted potential and not the action on the doubly asymptotic trajectory. In this expression, the principal term of the pre-exponential factor takes a more elegant form. In the derivation, we merely transform the asymptotic formulas in the mentioned work without going beyond the framework of classical mechanics.

Keywords: tunnel effect, Schrödinger operator, eigenvalue splitting, quantum double well, libration.

Received: 24.12.2012

DOI: 10.4213/tmf8463


 English version:
Theoretical and Mathematical Physics, 2013, 175:2, 609–619

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026