RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 176, Number 2, Pages 222–253 (Mi tmf8458)

This article is cited in 1 paper

New Faddeev–Niemi-type variables for the static Yang–Mills theory

M. P. Kisielowskiab

a Institute of Theoretical Physics, University of Warsaw, Warsaw, Polland
b St.~Petersburg Department of Steklov Institute of Mathematics, RAS, St. Petersburg, Russia

Abstract: Faddeev and Niemi introduced a nonlinear sigma model as a natural extension of the Faddeev $SU(2)$ chiral model. The field variables in the extended model are two chiral fields taking values in $SU(3)/(U(1)\times U(1))$ and $SU(3)/(SU(2)\times U(1))$. Shabanov showed that the energy functional of the extended model is bounded from below by a topological invariant and can therefore support knotlike excitations and a mass gap. We introduce new variables of the Faddeev–Niemi type for the static $SU(3)$ Yang–Mills theory, which reveal a structure of a nonlinear sigma model in the Lagrangian.

Keywords: Yang–Mills field, Faddeev–Niemi variables, stringlike soliton, maximal Abelian gauge fixing, Skyrme–Faddeev model.

Received: 09.12.2012

DOI: 10.4213/tmf8458


 English version:
Theoretical and Mathematical Physics, 2013, 176:2, 1016–1043

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026