RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 175, Number 1, Pages 84–92 (Mi tmf8428)

This article is cited in 21 papers

$p$-Adic Gibbs measures and Markov random fields on countable graphs

U. A. Rozikov, O. N. Khakimov

Институт математики при Национальном университете Узбекистана им. М. Улугбека, Ташкент, Узбекистан

Abstract: The notions of the Gibbs measure and of the Markov random field are known to coincide in the real case. But in the $p$-adic case, the class of $p$-adic Markov random fields is broader than that of $p$-adic Gibbs measures. We construct $p$-adic Markov random fields (on finite graphs) that are not $p$-adic Gibbs measures. We define a $p$-adic Markov random field on countable graphs and show that the set of such fields is a nonempty closed subspace in the set of all $p$-adic probability measures.

Keywords: граф, конфигурация, $p$-адическая мера Гиббса, $p$-адические марковские случайные поля.

Received: 16.10.2012

DOI: 10.4213/tmf8428


 English version:
Theoretical and Mathematical Physics, 2013, 175:1, 518–525

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026