RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 174, Number 1, Pages 109–124 (Mi tmf8343)

This article is cited in 6 papers

An inductive approach to representations of complex reflection groups $G(m,1,n)$

O. V. Ogievetskiiab, L. Poulain d'Andecya

a Centre de Physique Théorique Campus de Luminy, Marseille, France
b Lebedev Physical Institute, RAS, Moscow, Russia

Abstract: We propose an inductive approach to the representation theory of the chain of complex reflection groups $G(m,1,n)$. We obtain the Jucys–Murphy elements of $G(m,1,n)$ from the Jucys–Murphy elements of the cyclotomic Hecke algebra and study their common spectrum using representations of a degenerate cyclotomic affine Hecke algebra. We construct representations of $G(m,1,n)$ using a new associative algebra whose underlying vector space is the tensor product of the group ring $\mathbb{C}G(m,1,n)$ with a free associative algebra generated by the standard $m$-tableaux.

Keywords: group tower, Hecke algebra, reflection group, maximal commutative subalgebra, Young diagram, Young tableau.

Received: 04.04.2012

DOI: 10.4213/tmf8343


 English version:
Theoretical and Mathematical Physics, 2013, 174:1, 95–108

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026