RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 173, Number 2, Pages 268–292 (Mi tmf8315)

This article is cited in 14 papers

Nonlinear dynamics of a quasi-one-dimensional helicoidal structure

V. V. Kiselev, A. A. Raskovalov

Institute of Metal Physics, Ural Branch, RAS, Ekaterinburg, Russia

Abstract: We analytically describe solitons and spin waves in the helicoidal structure of magnets without an inversion center using the “dressing” method in the framework of the sine-Gordon model. Analyzing the nonlinear dynamics of spin waves in the helicoidal-structure background reduces to solving linear integral equations on a Riemann surface generated by the superstructure. We obtain spectral expansions of integrals of motion with the soliton and spin-wave contributions separated.

Keywords: helicoidal structure, sine-Gordon equation, Riemann problem, kink, breather.

Received: 15.11.2011
Revised: 11.03.2012

DOI: 10.4213/tmf8315


 English version:
Theoretical and Mathematical Physics, 2012, 173:2, 1565–1586

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026