RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 172, Number 1, Pages 64–72 (Mi tmf6940)

This article is cited in 4 papers

Blowup of solutions of a Korteweg–de Vries-type equation

E. V. Yushkov

Lomonosov Moscow State University, Moscow, Russia

Abstract: We investigate the nonlinear third-order differential equation $(u_{xx}-u)_t+u_{xxx}+uu_x=0$ describing the processes in semiconductors with a strong spatial dispersion. We study the problem of the existence of global solutions and obtain sufficient conditions for the absence of global solutions for some initial boundary value problems corresponding to this equation. We consider examples of solution blowup for initial boundary value and Cauchy problems. We use the Mitidieri–Pokhozhaev nonlinear capacity method.

Keywords: initial boundary value problem, solution blowup, global solvability.

Received: 26.09.2011

DOI: 10.4213/tmf6940


 English version:
Theoretical and Mathematical Physics, 2012, 172:1, 932–938

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026