Abstract:
We consider the question of integrable boundary-value problems in the examples of the two-dimensional Toda chain and Kadomtsev–Petviashvili equation. We discuss the problems that are integrable from the standpoints of two basic definitions of integrability. As a result, we propose a method for constructing a hierarchy of integrable boundary-value problems where the boundaries are cylindric surfaces in the space of three variables. We write explicit formulas describing wide classes of solutions of these boundary-value problems for the two-dimensional Toda chain and Kadomtsev–Petviashvili equation.
Keywords:two-dimensional Toda chain, Kadomtsev–Petviashvili equation, integrable boundary-value problem.