RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 173, Number 3, Pages 416–440 (Mi tmf6872)

This article is cited in 7 papers

Minkowski superspaces and superstrings as almost real–complex supermanifolds

S. Bouarroudja, P. Ya. Grozmanb, D. A. Leitesc, I. M. Shchepochkinad

a New York University Abu Dhabi, Division of Science and Mathematics, Abu Dhabi, U.A.E.
b Equa Simulation AB, Stockholm, Sweden
c Department of Mathematics, Stockholm University, Stockholm, Sweden
d Independent University of Moscow, Moscow, Russia

Abstract: For the Minkowski superspace and superstrings, we define and compute a circumcised analogue of the Nijenhuis tensor, the obstruction to the integrability of an almost real–complex structure. The Nijenhuis tensor vanishes identically only if the superstring superdimension is $1|1$ and, moreover, the superstring is endowed with a contact structure. We also show that all real forms of Grassmann algebras are isomorphic, although they are defined by obviously different anti-involutions.

Keywords: real supermanifold, complex supermanifold, Nijenhuis tensor, string theory, nonholomorphic distribution, Kähler supermanifold, hyper-Kähler supermanifold.

Received: 02.05.2010
Revised: 10.06.2012

DOI: 10.4213/tmf6872


 English version:
Theoretical and Mathematical Physics, 2012, 173:3, 1687–1708

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026