RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 170, Number 3, Pages 350–380 (Mi tmf6772)

This article is cited in 23 papers

Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation

Shou-fu Tianab, Hong-qing Zhangb

a Department of Mathematics, University of British Columbia, Vancouver, Canada
b School of Mathematical Sciences, Dalian University of Technology, Dalian, China

Abstract: Using a multidimensional super Riemann theta function, we propose two key theorems for explicitly constructing multiperiodic super Riemann theta function periodic wave solutions of supersymmetric equations in the superspace $\mathbb{R}_{\Lambda}^{N+1,M}$, which is a lucid and direct generalization of the super-Hirota–Riemann method. Once a supersymmetric equation is written in a bilinear form, its super Riemann theta function periodic wave solutions can be directly obtained by using our two theorems. As an application, we present a supersymmetric Korteweg–de Vries–Burgers equation. We study the limit procedure in detail and rigorously establish the asymptotic behavior of the multiperiodic waves and the relations between periodic wave solutions and soliton solutions. Moreover, we find that in contrast to the purely bosonic case, an interesting phenomenon occurs among the super Riemann theta function periodic waves in the presence of the Grassmann variable. The super Riemann theta function periodic waves are symmetric about the band but collapse along with the band. Furthermore, the results can be extended to the case $N>2$; here, we only consider an existence condition for an $N$-periodic wave solution of a general supersymmetric equation.

Keywords: supersymmetric Korteweg–de Vries–Burgers equation, super-Hirota bilinear form, Riemann theta function, super Riemann theta function periodic wave solution, solitary wave solution.

Received: 27.04.2011

DOI: 10.4213/tmf6772


 English version:
Theoretical and Mathematical Physics, 2012, 170:3, 287–314

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026