RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 169, Number 3, Pages 352–367 (Mi tmf6735)

This article is cited in 5 papers

Deriving hydrodynamic equations for lattice systems

T. V. Dudnikova

Elektrostal Polytechnical Institute, Elektrostal, Moscow Oblast, Russia

Abstract: We study the dynamics of lattice systems in $\mathbb Z^d$, $d\ge1$. We assume that the initial data are random functions. We introduce the system of initial measures $\{\mu_0^{\varepsilon},\;\varepsilon>0\}$. The measures $\mu_0^{\varepsilon}$ are assumed to be locally homogeneous or “slowly changing” under spatial shifts of the order $o(\varepsilon^{-1})$ and inhomogeneous under shifts of the order $\varepsilon^{-1}$. Moreover, correlations of the measures $\mu_0^{\varepsilon}$ decrease uniformly in $\varepsilon$ at large distances. For all $\tau\in\mathbb R\setminus0$, $r\in\mathbb R^d$, and $\kappa>0$, we consider distributions of a random solution at the instants $t=\tau/\varepsilon^{\kappa}$ at points close to $[r/\varepsilon]\in\mathbb Z^d$. Our main goal is to study the asymptotic behavior of these distributions as $\varepsilon\to0$ and to derive the limit hydrodynamic equations of the Euler and Navier–Stokes type.

Keywords: harmonic crystal, Cauchy problem, random initial data, weak convergence of measures, Gaussian measure, hydrodynamic limit, Euler equation, Navier–Stokes equation.

Received: 19.01.2011
Revised: 26.02.2011

DOI: 10.4213/tmf6735


 English version:
Theoretical and Mathematical Physics, 2011, 169:3, 1668–1682

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026