RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 169, Number 3, Pages 341–351 (Mi tmf6734)

This article is cited in 2 papers

Existence and analyticity of eigenvalues of a two-channel molecular resonance model

S. N. Lakaevab, Sh. M. Latipova

a Samarkand State University, Samarkand, Uzbekistan
b Samarkand Branch, Academy of Sciences of the Republic of Uzbekistan, Samarkand, Uzbekistan

Abstract: We consider a family of operators $H_{\gamma\mu}(k)$, $k\in\mathbb T^d:= (-\pi,\pi]^d$, associated with the Hamiltonian of a system consisting of at most two particles on a $d$-dimensional lattice $\mathbb Z^d$, interacting via both a pair contact potential $(\mu>0)$ and creation and annihilation operators $(\gamma>0)$. We prove the existence of a unique eigenvalue of $H_{\gamma\mu}(k)$, $k\in\mathbb T^d$, or its absence depending on both the interaction parameters $\gamma,\mu\ge0$ and the system quasimomentum $k\in\mathbb T^d$. We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum $k\in\mathbb T^d$ in the existence domain $G\subset\mathbb T^d$.

Keywords: Hamiltonian, creation operator, eigenvalue, bound state, lattice.

Received: 17.12.2010

DOI: 10.4213/tmf6734


 English version:
Theoretical and Mathematical Physics, 2011, 169:3, 1658–1667

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026