RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 168, Number 1, Pages 98–111 (Mi tmf6666)

This article is cited in 4 papers

Invariant description of $\mathbb{CP}^{N-1}$ sigma models

P. P. Goldsteina, A. M. Grundlandbc

a Theoretical Physics Department, The Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland
b Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
c Université du Québec à Trois-Rivières, Canada

Abstract: We propose an invariant formulation of completely integrable $\mathbb P^{N-1}$ Euclidean sigma models in two dimensions defined on the Riemann sphere $S^2$. We explicitly take the scaling invariance into account by expressing all the equations in terms of projection operators, discussing properties of the operators projecting onto one-dimensional subspaces in detail. We consider surfaces connected with the $\mathbb P^{N-1}$ models and determine invariant recurrence relations, linking the successive projection operators, and also immersion functions of the surfaces.

Keywords: sigma model, soliton surface in a Lie algebra, projector formalism, invariant recurrence relation.

DOI: 10.4213/tmf6666


 English version:
Theoretical and Mathematical Physics, 2011, 168:1, 939–950

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026