RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 167, Number 3, Pages 496–513 (Mi tmf6657)

Integrability of differential–difference equations with discrete kinks

Ch. Scimiternaab, D. Leviab

a INFN, Sezione di Roma Tre, Roma, Italy
b Dipartimento di Ingegneria Elettronica, Università di Roma Tre, Roma, Italy

Abstract: We discuss a series of models introduced by Barashenkov, Oxtoby, and Pelinovsky to describe some discrete approximations of the $\phi^4$ theory that preserve traveling kink solutions. Using the multiple scale test, we show that they have some integrability properties because they pass the A$_1$ and A$_2$ conditions, but they are nonintegrable because they fail the A$_3$ conditions.

Keywords: lattice equation, kink solution, multiscale expansion, integrable equation.

Received: 23.06.2011

DOI: 10.4213/tmf6657


 English version:
Theoretical and Mathematical Physics, 2011, 167:3, 826–842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026