RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 167, Number 2, Pages 214–221 (Mi tmf6635)

This article is cited in 57 papers

An integrable equation with nonsmooth solitons

Zhijun Qiao, Xianqi Li

Department of Mathematics, The University of Texas-Pan American, Edinburg, USA

Abstract: We present the bi-Hamiltonian structure and Lax pair of the equation $\rho_t= bu_x+(1/2)[(u^2-u_x^2)\rho]_x$, where $\rho=u-u_{xx}$ and $b=\mathrm{const}$, which guarantees its integrability in the Lax pair sense. We study nonsmooth soliton solutions of this equation and show that under the vanishing boundary condition $u\to0$ at the space and time infinities, the equation has both “W/M-shape” peaked soliton (peakon) and cusped soliton (cuspon) solutions.

Keywords: integrable equation, Lax pair, peakon, cuspon.

Received: 03.06.2009
Revised: 26.10.2010

DOI: 10.4213/tmf6635


 English version:
Theoretical and Mathematical Physics, 2011, 167:2, 584–589

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026