RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2010 Volume 165, Number 3, Pages 472–487 (Mi tmf6588)

This article is cited in 1 paper

Moving poles of meromorphic linear systems on $\mathbb P^1(\mathbb C)$ in the complex plane

G. F. Helmincka, V. A. Poberezhnyib

a Korteweg–de Vries Institute of Mathematics, University of Amsterdam, Amsterdam, The~Netherlands
b Institute for Theoretical and Experimental Physics, Moscow, Russia

Abstract: Let $E^0$ be a holomorphic vector bundle over $\mathbb P^1(\mathbb C)$ and $\nabla^0$ be a meromorphic connection of $E^0$. We introduce the notion of an integrable connection that describes the movement of the poles of $\nabla^0$ in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle $E^0$ is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.

Keywords: integrable connection, deformation space, integrable deformation, logarithmic pole.

DOI: 10.4213/tmf6588


 English version:
Theoretical and Mathematical Physics, 2010, 165:3, 1637–1649

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026