RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2000 Volume 124, Number 3, Pages 373–390 (Mi tmf645)

This article is cited in 2 papers

Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations

Ya. V. Lisitsyn, A. V. Shapovalov

Tomsk State University

Abstract: We construct the class of integrable classical and quantum systems on the Hopf algebras describing $n$ interacting particles. We obtain the general structure of an integrable Hamiltonian system for the Hopf algebra $A(g)$ of a simple Lie algebra $g$ and prove that the integrals of motion depend only on linear combinations of $k$ coordinates of the phase space, $2\cdot\mathrm{ind}g\leq k\leq\mathbf g\cdot\mathrm{ind}g$, where $\mathrm{ind} g$ and $\mathbf g$ are the respective index and Coxeter number of the Lie algebra $g$. The standard procedure of $q$-deformation results in the quantum integrable system. We apply this general scheme to the algebras $sl(2)$, $sl(3)$, and $o(3,1)$. An exact solution for the quantum analogue of the $N$-dimensional Hamiltonian system on the Hopf algebra $A\bigl(sl(2)\bigr)$ is constructed using the method of noncommutative integration of linear differential equations.

Received: 05.11.1999

DOI: 10.4213/tmf645


 English version:
Theoretical and Mathematical Physics, 2000, 124:3, 1172–1186

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026