RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 161, Number 3, Pages 367–381 (Mi tmf6447)

The WDVV symmetries in two-primary models

Yu-Tung Chena, Niann-Chern Leeb, Ming-Hsien Tuca

a Department of Computer Science, National Defense University, Tauyuan, Taiwan
b General Education Center, National Chin-Yi University of Technology, Taichung, Taiwan
c Department of Physics, National Chung Cheng University, Chiayi, Taiwan

Abstract: From the bi-Hamiltonian standpoint, we investigate symmetries of Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations proposed by Dubrovin. These symmetries can be viewed as canonical Miura transformations between genus-zero bi-Hamiltonian systems of hydrodynamic type. In particular, we show that the moduli space of two-primary models under symmetries of the WDVV equations can be parameterized by the polytropic exponent $h$. We discuss the transformation properties of the free energy at the genus-one level.

Keywords: Frobenius manifold, WDVV equation, bi-Hamiltonian structure, primary free energy, dToda hierarchy, Benney hierarchy, dDym hierarchy, polytropic gas dynamics.

Received: 09.03.2009

DOI: 10.4213/tmf6447


 English version:
Theoretical and Mathematical Physics, 2009, 161:3, 1634–1646

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026