RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 160, Number 3, Pages 434–443 (Mi tmf6408)

Discrete Toda lattices and the Laplace method

V. L. Vereshchagin

Institute of Mathematics with Computing Centre, Ufa Science Centre, RAS, Ufa, Russia

Abstract: We apply the Laplace cascade method to systems of discrete equations of the form $u_{i+1,j+1}=f(u_{i+1,j}, u_{i,j+1},u_{i,j}, u_{i,j-1})$, where $u_{ij}$, $i,j\in\mathbb Z$, is an element of a sequence of unknown vectors. We introduce the concept of a generalized Laplace invariant and the related property that the systems is “of the Liouville type”. We prove a series of statements about the correctness of the definition of the generalized invariant and its applicability for seeking solutions and integrals of the system. We give some examples of systems of the Liouville type.

Keywords: nonlinear discrete equation, Laplace method, Darboux integrability.

Received: 13.08.2008
Revised: 05.11.2008

DOI: 10.4213/tmf6408


 English version:
Theoretical and Mathematical Physics, 2009, 160:3, 1229–1237

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026